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SOLUTION OF A DIFFRACTION PROBLEM
II. THE NARROW DOUBLE WEDGE

By H. M. NUSSENZVEIG

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
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The problem of diffraction by a ‘narrow double wedge’ (width much smaller than wavelength) is
investigated. Strong reflexion and quasi-static effects are the main features of this problem. The
asymptotic behaviour of the solution is determined by the edge singularities. This leads to an
approximate solution, which seems to be very accurate. This solution is found to be in good agree-
ment with approximate solutions derived by different methods. The reflexion coefficient and the
‘end correction’ are evaluated. The results are compared with those obtained by other authors. It
is shown that they contain a new effect, the ‘ evanescent mode correction’, which is very small in this
region. Resonance effects in channels of finite length are analyzed.

Y B \

1. INTRODUCTION

—

§ > In part I of this paper (Nussenzveig 1959 4; henceforward quoted as I), we have studied the
@) E problem of diffraction by a wide double wedge (width of double wedge much larger than
= wavelength). In this part, we shall consider the case of a narrow double wedge (width of double
E 8 wedge much smaller than wavelength), i.e. we shall assume that K < 1; the notation is the
=~ w same as in I.

For K < 1, the only travelling mode within the waveguide is the principal mode, which
will therefore be taken as incident mode; all other modes are evanescent. According to
I, (2-8), it follows that

u(x,y) = exp (—1ikx) +a, exp (ikx) + ilan cos (k, ,y)exp [ — (k2 ,—k?)x]. (1-1)
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The reflexion coefficient is IR|2 = |, (1-2)
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32 H. M. NUSSENZVEIG ON THE

As was pointed out in I, § 5 (g), the narrow double-wedge problem is a particular case of
critical incidence; this is connected with the fact that propagation is no longer possible for
K — 0. This suggests that strong reflexion should occur in this domain.

Quasi-static effects should also become important for K < 1. In particular, the influence of
the edge singularities extends over the whole aperture. Accordingtol,§4 (4), this determines
the behaviour of the mode amplitudes a, for y, > 1, i.e. the behaviour of all evanescent
modes.

The above considerations allow us to predict at once the character of the solution: g,
should be close to —1, and the main term of a,, for n > 1, should be proportional to n~¥ (see
I, §4(d)). This will be confirmed by the detailed solution.

2. THE COEFFICIENTS K, ,

For K < 1, the functions S, (K) and C,(K) defined in I, (3-6) and I, (3-9) may be expanded
in series of powers and logarithms of K. For this purpose, it suffices to replace Hy(v) by its
expansion about the origin, and to integrate term by term (Nussenzveig 1957; henceforward
quoted as A). The results are:

Sy(K) = 0, (21)
Cy(K) = Kl K+2[1_— (1—-C ]K——J@l nk—> 1——7; 4 ]K3
+5K5an+O(K5), (2-2)
L AT e AL g {[ g, :]L__ijﬂ_} 3
S, (K) = 7rmrK+ Kl K+il1 (1 0) o 7r(n7r)3K
_iri 5 5 ,
27;[717; (WJK nK+O0(K%) (n>1), (2:3)
2i8i(2mn) ., 21 1 o :l: J
C,(K) = T K = (n mE K3InK— + (2C—1) (n)?
+1M}K3+1[ 3 ]Kf‘l K+0(K) (n=1), (2:4)
7w (nm)3 wl(nm)? - P
where C = 0-5772 (Euler’s constant), Si(x) is the sine integral, Ci(x) is the cosine integral,
and 7, = In (2mn) + C — Ci(2mn). (2+5)
Substituting these expressions in I, (3-12) to (3-14), we find
1
(—1)m"K,, , ﬁ —%2—75’2 2ﬂ27;2nK2+————K41nK—}—0 (K% :I (m=+=n+0), (2-6)
1 1. 17, 3 1 ik oK
K, .= é——;Sl (27772)——57; WK o (a3 K1 +O(K*) (n=0), (2:7)
i SR IS S ¢ {[l_i _ ]J__L_IL} :
(=1 Ko = = (m7r)2K+7T (mm)? Bl k4|5 77(1 ¢) (mm)2 2w (mm)* K
_irr o 5 5 ,
M[(mﬂ) mﬂ) K mK+O0(K) (m+0),  (28)
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SOLUTION OF A DIFFRACTION PROBLEM. II 33

1 (1, ) K2

(—1)K,, _QW{M LK 1n1<+(1—c+ ) -
+1[i_—-1+~:|1<41n1<+0(1<4)} (n0), (2:9)

4\ nm  (nm)3 ’
1 i 1 1 3
Koo=5—KnK—|2 ]K+ KlnK

+T§ 1+%(2C—16&)]K3+0(K51n1(). (2:10)

We shall write these expressions in the form

(—1)m»K, =K, +KP K2+ K2, K*InK+... (m=0,n40), (2-11)

(=)7K, o = KOy K+ KD K3 In K+ K@ K3+...  (m =+ 0), (2:12)
(="K, = K@, + KK In K+ K2, K?+... (n+0), (2-13)
Koo =+ KO KIn K+ K@ K+ K@ K3 In K+ ..., (2:14)

where K, KD, ... may be obtained at once by comparison with (2:6) to (2-10).

3. THE ASYMPTOTIC METHOD OF SOLUTION

It follows from (2:8) and (2-10) that lim (K, ;) = 40, ,. According to I,§5(g), this
K0
implies that lima, = —9,
K0

(2-14),it may beshown, asinI, § 5 (g), that system (S) separatesinto asystem ($”), containing
only the amplitudes of the evanescent modes, and a single equation which contains a,.

To obtain higher-order approximations, we shall take an ‘Ansatz’ for the solution in the
form of a series of powers and logarithms of K:

o- Similarly, if we neglect terms of higher order than Kin (2-11) to

= —14aP KIn K44’ K+a® K? (In K)24-aP K*In K 4 a? K2+ af® K3(In K)*
+a® K3(In K)2+4af? K31In K+ O(K3), (3-1)
(—=1)ra, =a® K+dP K2 ln K+a? K244 K3 (InK)2 44 K3In K+ O(K3) (n>1). (32)

Substituting (2-11), (2-12), (3-1) and (3-2) in system (S), for m > 1, and identifying, we
obtain a series of infinite systems of linear equations (s5,) in the unknowns ¢{” (r = 0,1, 2, ...).
All these systems are of the form

(5,) @ = 3 KphaP+b7 (m=1,2,3,...), (3:3)

and they differ from one another only by the inhomogeneous term 5{:

( )

5 VoL. 252. A,
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34 H. M. NUSSENZVEIG ON THE

Similarly, if we substitute (2-13), (2-14), (3-1) and (3-2) in the first equation of system (.5)
(for m = 0), and identify, we obtain a series of equations (E;) in the coefficients a4
(s=0,1,...).

In each order of approximation, we have to solve a system (S,) and an equation (E,).
It is readily verified that the solution of each system (S§,) requires only the solution of

equations (Z,) belonging to previous approximations, and vice versa. This means that
system (S separates in all orders of approximation.

Replacing the coefficients K, by their values, and taking into account systems (S,), for
0 < 7 < 4, and equations (E,), for 0 < s < 7, we finally get

= —14—= KanJra(”KJr%KZ(an) ~L—L}a(1)K21nK—~(a<1))2K2

_@Ka‘(l K)3 —EamIG(InK) +a K3In K+ 0(K?), (3-6)

(—1)"a, _[1——1(1111( ag,vK_%Kz(an)ﬂKa;m

+a® KK+ 0K (n=1), (3-7)
o a(")
where all = 2[1—~~— 3 ]+ﬁ2 Z Ty (3-8)
© 40 o g
P = + ~ (af ()2 4'1 I:l___ (3— :Ia(v 7:2 S a; + L z T'a_ (3-9)

Equations (3-6) to (3-9) reduce the solution of the narrow double-wedge problem, up to
terms of the order of K3, to the solution of systems (S;) and (§,). According to (2-6), (2:7),
(2-11) and (3-3), the coefficients of these systems are

n (T,—T,) . 1 1.

Forn > 1, Si (2nn) and Ci (27n) may be replaced by their asymptotic expansions (Bromwich
1949, p. 339), so that (2-5) becomes

3! 5!
In (27n) +C+ (27m) (27m)4+ @ (3-11)
and (3-10) gives the asymptotic expansions
© n(lnm—Inn) 1 (1_ 3 ) 6 ] ; .
K 712 (m*—n2)  (2mm)*\n  2m2n} + (27rm)4n+"' (m=n),  (3:12)
1 2 24
© _ = (0) .
K = 2n%n 7r(27m)3+77(27m)5 },,IE:,[K Wl (2 0). (3:13)

It also follows from (2-6) to (2:10), (3-4) and (3-11) that all inhomogeneous terms of (:5,)
have asymptotic expansions of the same type:

b7 = By (2mm) 2 lnm -+ B (2mm) ~2+ BY (2mm) ~*lnm+ B (2mm) 4+ ...,  (3-14)

where By, ..., By, ... are numerical constants (some of which may vanish).
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SOLUTION OF A DIFFRACTION PROBLEM. II 35

(a) Asymptotic solution of the systems (S,)

If we compare (2-11) and (3-12) with I, (6-9), we see that, neglecting higher-order terms,
K, .=K, , (mn=1). Thus, I, (6-9) is valid both for the wide and for the narrow double
wedge; it may be shown that it remains valid in the intermediate case. Therefore, the main
term of K., , in the asymptotic region (i.e. for y,, > 1, v, > 1) is independent of K.

This suggests that the behaviour of K, , in the asymptotic region must be related to some
feature of the field, the character of which remains unchanged for all K. The asymptotic
behaviour of the evanescent mode amplitudes should also depend on this feature; this leads
us to identify it with the field singularity at the edges.

Thus, we are led to infer that the asymptotic behaviour of K, , as K, , determines the
asymptotic behaviour of the mode amplitudes. According to I, (4-18) and I, (5-2), we have,

for a wide double wedge,
(—1)"a, ~ ¢o(K) =3 +¢,(K) 73 +¢o(K) n7 % + O (n~%). (3:15)

It follows from the above assumption that an asymptotic expansion of the same type must be
valid for all K. In particular, this should apply to the solution of all systems (S,).

To find out whether this is correct, let us make the following asymptotic ‘Ansatz’ for the
solution of (5,):

a = AP0 APy~ A p ADp=(1429) . APp=(+29 (3:16)

where A, ..., A, ... are numerical constants, and 0 < 1, < 4, < .... According to I, §4 (d),
the term in #~% in (3-15) gives rise to a singularity in =% in the first partial derivatives of «,
which corresponds to a term in (k) in the expansion of u near the edge. Similarly, each
term of (3-16) gives rise to a singularity in some derivative of u, which corresponds to a given
power of k7 in the expansion of « near the edge. Integral powers of £7 do not contribute, for
they cannot give rise to a singularity; therefore, we may restrict ourselves to non-integral
values of A,.

If we replace (3:16) in (S,), the first member, 47, is replaced by an asymptotic expansion
inm. We may also replace 4 by its asymptotic expansion (3-14). This suggests that we look

for an asymptotic expansion of the remaining term, > K'®, a{”, and then identify the results.
n=1
This is the basis of the ‘asymptotic method of solution’.
According to (3-12) and (3:16), what is required is the asymptotic expansion of the
function
- 1 & (lnm—Inn
B m) =5 3 ¢ )

A ;l'A(mz_nZ) ’ (3'17)

for all positive non-integral values of A. This expansion will be derived in the Appendix (§ 7).
According to equations (7-1) and (7-22), the only term in the expansion which contains
anon-integral power of mis: % sec?(3Am) m~2-1. To each term A{”m~*i-! in the first member of
(S,) corresponds a term 1A4{”sec? (3A,7) m~*~1in the second member. Since no other similar
term exists, it follows, by identifying, that we must have

4cos? A, =1, (3-18)

/12_;‘:%_'_2].; /l2j+1:%+2j (J=0, L,2,..). (3'19)
5-2
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36 H. M. NUSSENZVEIG ON THE
Equation (3-16) becomes

P = AP S AP % | AP - AP (3-20)

This agrees exactly with (3:15), justifying our previous assumptions.

There exists a close relationship between (3-20) and Sommerfeld’s expansion of a branched
wave function in a series of Bessel functions of fractional order (Frank & Von Mises 1933,
p. 838). Equation (3-15) is the asymptotic form of Sommerfeld’s expansion in the k-repre-
sentation. According to (3:19) and (3-20), the order of the branch points at the edges does not depend
on K. We shall call (3-20) a Sommerfeld asymptotic series.

To evaluate the coeflicients of Sommerfeld’s asymptotic series, we must substitute (3-20)
in (§,), and then, with the help of (7-1) and (7-22), we must identify the resulting asymptotic
expansions. We shall outline the general procedure, and then we shall apply it to (§,) and
(S)-

The asymptotic expansions (3:12), (3-14) and (7-22) are semi-convergent; for a given
value of m, there exists, in each of them, an optimum number of terms, for which the error is
a minimum. For a given number of terms, the accuracy increases with m; accurate results
may be obtained even for m = 1, if we do not exceed the optimum number of terms corre-
sponding to this case.

It may be expected that Sommerfeld’s series will also be semi-convergent. However, we
do not know whether the convergence is good already for n = 1. This depends on the
numerical values of the coefficients By, B{", ... in (3-14), so that a separate investigation is
required for each system (S,). For this purpose, we start with an ‘Ansatz’ containing the first
N terms of Sommerfeld’s series, assuming thatit may be applied already forz = 1 (orm = 1).
We replace this ‘Ansatz’ in (S,), and replace the = functions by their asymptotic expansions.
Since our ‘Ansatz’ satisfies (3-18), all terms containing fractional powers of 7 drop out. The
remaining terms are asymptotic expansions similar to (3-14). Since we have N constants at
our disposal, we may identify the first V terms of these expansions, leaving a residual which
contains only higher order terms. This gives a system of N linear equations to determine the
unknowns A, ..., A4 .

This procedure may be repeated for N = 1,2, 3, ... ; in each approximation, we obtain the
value of an additional unknown, as well as new values for the unknowns of the previous
approximation. If the convergence is good, the values of a given unknown in different
approximations should be close to one another; also, in each approximation, we must have:
|49 > |AP] > |4P| > ..., for, otherwise, Sommerfeld’s series would not converge well for
n = 1, contrary to our assumption. If these conditions are satisfied for N < N,, but not for
N = N,+1, we may take this as an indication that N, is the optimum number of terms for
n = 1. In this way, we obtain an approximate solution of ($.), in the form of a Sommerfeld
series with N, terms.

It may happen, however, that Sommerfeld’s series does not converge well for z = 1; or, if
it does, we may want a better approximation. In either case, the following procedure may be
applied: we assume that our ‘Ansatz’ of N terms applies only for n > 2, and deal with a{”
as an additional unknown. We separate (S,) into two parts: the first equation (m = 1), and
the remaining system of equations (m = 2). This partial system is dealt with in the same way
as (S,) in the previous case; thus, we obtain N equations in the N1 unknowns
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SOLUTION OF A DIFFRACTION PROBLEM. II 37

a, AP, ..., A% . Together with the additional equation for m = 1, this suffices to determine
them. If Sommerfeld’s series does not converge well for n = 2, we may start again, applying
our ‘Ansatz’ only for n > 3 (this leaves two additional unknowns, 4{” and 4%’), and so on.
The applicability of the method is restricted only by the practical difficulty in solving large
systems of linear equations, but we may expect, in general, that Sommerfeld’s series con-
verges well already for fairly small values of .

The main result of the above discussion is that we may take advantage of our knowledge
about the asymptotic behaviour of the solution of (S,) to find an approximate solution, by
reducing it to a finite system of linear equations.

(b) Approximate solution of the narrow double-wedge problem
Let us apply the method outlined in the previous section to (§,) and (S,). We shall take
four terms in the ‘Ansatz’ (3-20); terms of higher order than n~* (or m~*) may then be
neglected in (3-12), (3-14) and (7-22). The asymptotic method of solution leads to a system
of four equations, the coeflicients of which may be evaluated with the help of tables of
Riemann’s zeta function (see A). The result is
—2-454+3-604"+1-2849 4+ 1154y = — 1B,
8:954("+8:9547"+0-3349 —0-164 = 1B,
0-04054% - 0-153A4 4 2-4549 — 3-604Y = BY|(47)?,
0-0957A4$ + 0-2684 + 89249+ 8-93A4 — BY|(4m)2.

(3-21)

To obtain the first approximation, N = 1, we take only the first equation and the first
unknown in (3-21), neglecting the other equations and unknowns. In the second approxi-
mation, N = 2, we take the first two equations and unknowns, and so forth.

In the case of (5,), we have, according to (2-5), (2-8), (3-4) and (3:14),

B = BY = 8i/m; B = (8i/n) [In (27)+C]; BY = 0. (3-22)
Substituting in (3-21), we obtain the successive approximations
N=1: AP =0259i;
N=2: AP =0-207, A® = —0-0353i;
N=3: AP =0-207i, A4 = —0-0351i, AP = —0-00123i;
N—4: AP =0207, AP = —0-0354i, AP = —0-000108i, AL = 0-000747i.

(3-23)

The convergence is very good for N < 3, but begins to get worse for N = 4; this seems to
indicate that the optimum number of terms for » = 1 is N, = 3. This leads to the following
approximate solution of (5 :

d® =i(0-207n%—0-0351n"%—0-00123n~%) (n=>1). (3-24)
Substituting this in (3-8) and (3-4), we get

0 (0)
LA R
T a=1

o= 0-06Li, aff =2—1-114i, (3-25)

B{® = B — —3-2424+1-806i, B — —7-829-1-815i, B = 0. (3-26)
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38 H. M. NUSSENZVEIG ON THE

Substituting (3-26) in (3-21), we find that the optimum number of terms for 7 == 1, in (.S,), is
also N, = 3, which corresponds to the following approximation:

&P = (—0-26340-1051) =% (0-0447 — 0-0543i) =54 (0-00156 ++0-001651) n~%  (n > 1).
(3-27)
Substituting these results in (3:6), (3-7) and (3+9), we finally get the approximate solution of
the narrow double-wedge problem :

ay = —1+(4i/m) Kln K4-(2—1-1141) K+ (8/n?) K*(In K)2— (4i/m) (2—1-114i) K2In K

—3(2—1-1141)2 K2 — (161/7%) K3(In K)3— (12/n?) (2—1-114i) K3(In K)?

+ (4-256+2-3771) K3In K4 O(K3), (3-28)
(—1)"a, = (0207 n~%—0-0351n~%—0-00123n~%") [iK + (2/m) K2In K —}i (2—1-114i) K?

— (4i/m2) K3(In K)2] -+ [(— 0-263 -+ 0-1051) n~ 4 (0-0447 — 0-05431) n—%

+(0-001564-0-001651) =] K3In K4+ O(K3) (n=1). (3-29)

What is the accuracy of this approximation ? It is easily seen by the above derivation that

the relative residuals (see I, §5(5)) of (3-28) and (3-29) are very small, even for m = 1, and
decrease rapidly when m increases, tending to zero for m—co. If we make the reasonable
assumption that (S) is not an ‘ill-conditioned’ system (I, § 5 (4)), it follows that (3-28) and
(3-29) are a very good approximation. Of course we must not go beyond the range of values

of K for which the above series converge well, i.e. the above solution may be applied only if
|KIn K| < 1 (this means, in practice, K < 0-1).

4. OTHER METHODS OF SOLUTION

Although itis difficult, as we have seen, to estimate directly the accuracy of the asymptotic
method of solution, an indirect estimate may be obtained by comparing it with other
methods. We shall consider three different methods which may be applied to find an
approximate solution of system ().

(a) The method of partial systems

This method, which is due to Fourier, is often applied in problems of this type (Zernov
1951). It consists in approximating the solution of (§) by the solution of a sequence of partial
systems extracted from it. In the Nth-order approximation, we neglect all equations and
unknowns beyond the Nth, and solve the remaining system of N equations. If the method
converges well, the values obtained for a given unknown in different approximations should
be close to one another.

The first-order approximation is given by

ay = —Koo/(1=Ko0); =0 (n=1). (4-1)
Since this corresponds to neglecting all evanescent modes, we shall call the difference
da, = a,—aj the evanescent mode correction. According to (3-28) and (4-1),
da, = 0-061iK[1— (4i/n) KIn K— (2—1-145i) K—(12/n?) K?(In K)?]
—(0-232—0-088i) K3ln K+ O(K3). (4-2)

Therefore, |day| < |ay|, so that af is a very good approximation.
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Itis easily seen that 4§ is identical to the result obtained by applying Levine & Schwinger’s
variational method, taking as ‘trial function’ a constant electric field over the aperture
(Lewin 1951, p. 128; Marcuvitz 1951, p. 184). This is equivalent to neglecting the evanescent
mode correction.

The second-order approximation, expressed in terms of da, and a,, gives:

day' = 0-041iK[1— (4i/m) KIn K— (2—1-154i) K— (12/n?) K2 (In K)?]
—(0-157—0-0651) K3In K+ O(K3), (4-3)
a' = —0-165[iK+ (2/m) K2In K — (1/2) (2—1-1341) K2— (4i/7%) K3(In K)?]
+(0-210—0-05151) K3In K4 O(K3), (4-4)
whereas, according to (3-29),
a; = —O0-171[iK+(2/m) K2In K — (1/2) (2—1-1141) K2 — (4i/7%) K3 (In K)?]
+(0-217—0-05241) K3In K+ O(K?). (4-5)
Comparing (4-3) with (4-2), and (4-4) with (4-5), we are led to infer that the method of
partial systems converges well. This is due to the rapid decrease of the amplitudes of the
evanescent modes. The method of partial systems may be applied, in practice, to derive good
approximations for the amplitudes of the reflected wave and of the first few evanescent

modes, but not for higher-order modes, since the difficulty obviously increases with the
number of modes which are retained.

(b) Neumann’s iteration method

It is easily seen, by comparison with I, (6-16), that Neumann’s series converges to the
rigorous solution when K = 0. This leads us to expect that it still converges (very slowly)
for K <1 (I1,§6(b)).

It follows from I, (6-7) that af will contain (among others) the following terms:

— Ko, o[1+ Ky 4 (Ko, 0)? 4] = — Ky o/ (1 — Ko, o) = g, (4-6)
where the last equality follows from (4-1). Therefore, we may put
afr = — Ko o= (Ko,0)2 — .. — (Ko,0) "+ (8ag) ™, (4-7)
where the last term represents the evanescent mode correction in Neumann’s rth-order
approximation.
According to (2-8), (3-11) and I, (6-4), we have, in N,
(0ag)™ = 0, (4-8)

(—1)a = (0-07797-2+ 0032372 In n40-000816n~4+...)iK
—0-0323in 2 K3In K+ O(K?) (n=>1). (4-9)

Neumann’s second-order approximation may be written

alr = — K, o(1+ Ky o) — (K%, (n=0), (4-10)
where
K

m,
| b

(K’r) mn
p

K,,...K,, (rfactors). (4-11)

n

1 v

T8

1
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It follows from (4-7), (4:10), (2-8), (2-9) and (8-11) that
(0ag)¥2 = —(K'?)y o = 0-01361K —0-0102iK3In K+ O(K3). (4-12)
On the other hand, according to (2-8), (2-11), (3-12) and (4-11), for n > 1,
(—=1)" (i K) (K%)= —E3(1,n) + (2m) ~2[{'(3) — (3/27%) {'(5)] ()~

(2415 K2In K) {2(1, 1) — (27) 2 [(3) — (3/27) L(5)] (mn) 2+ O(n~))

+ (2m)"HE(3, n) — (2m) 2[{(5) — (3/27%) {(7)] (mm) =2} + O (K3), (4-13)
where E(A,z) is the function defined in (8:17), and =) (4,n) is its partial derivative with
respect to 1. The asymptotic expansion of these functions for A = 1 is given in the Appen-
dix (§ 7). With the help of the Appendix, we obtain, replacing (4:13) in (4-10), for n > 1,
(—1)7al = n~2{[0-124 4+ 0-0556 In 7+ 0-00395 (In 7)2 + 0-000545(In n)?

—0-0000694 72 In 7+ 0-0000414 12 (In 7)2+ O (n~2)] iK + (0-0390+0-0162In 7
+0(n=2)) [(2/m) K2In K—1i(2—1-1751) K?] —[0-0513+0-001891In7

+0-00163 (Inn)2—0-0002727n 2Inn+ O(n~?)]1K%1n K} + O(K3). (4-14)
In Ny wehave (a0 — (142K, ) (K2)0— (K)g.0 (415)
We find (K)o = —0-00148iK +0-00104iK?In K + O(K?), (416)

(0ay)¥s = 0-0272[iK + (1/m) K?In K —}i(2—1-1751) K?] —0-0204iK3In K
+0-001481K —0:00104iK*In K+ O(K3). (4-17)
Let us compare these results with those of the asymptotic method. The series (4-6)
converges (very slowly). Comparing (4-8), (4:12) and (4-17) with (4-2), we see that the
evanescent mode correction also appears to converge very slowly in Neumann’s method.
To compare (4-9) and (4-14) with (3-29), we replace the common factor n*%, in the frac-
tional powers of (3-29), by the expansion:
n* =exp (+3lnn) = 1 +ilnn+% (Inn)2+... (4-18)
(cf. I, (6:15)), with the following result:

(—1)a, = {n~2[0-172+ 0-0807 In - 0-00956 (In )%+ 0-00149 (Inn)3+...]
—n~4[0-00123 - 0-00041 In 7+ 0-00007 (Inz)2+...]} [iK + (2/7) K2In K
—$1(2—1-1141) K2 — (4i/n?) K3(In K)?] +{n~2[(— 0-218 -+ 0-051i)
+(—0-1030-0531) In 2+ (— 0-0121 -+ 0-002831) (In7)2+-...]+7n~4[(0-00156
+0-001651) -+ (0-00052 + 0-000551) In -+ ...] +...} K31n K+ O(K3). (4-19)
Comparing this with (4-9) and (4-14), we see that Neumann’s method apparently
converges also for n > 1. The rate of convergence, which is already slow for small #, becomes
slower and slower as 7 increases, since we must then take a larger number of terms in (4-18)

to get a good approximation. This behaviour in the asymptotic region is similar to that
which was found in the wide double-wedge problem (I,§ 6 (4)).
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SOLUTION OF A DIFFRACTION PROBLEM. II 41

(¢) The modified iteration method

The slow convergence of Neumann’s method is due, in part, to the slow convergence of
geometric series like (4+6). This suggests that the rate of convergence might be improved by
separating the contribution of the principal mode from the others. System (§) may be
rewritten as follows:

Gy = — Ky o(1— Ky o) '+ (1— KO,O)*;KO,,Z% — a}+day, (4-20)
4= —Kpo(1=a) + 3 Ky 0, (m>1). (4-21)

If we apply Neumann’s method to the partial system (4-21), we get
a, = —(1—ay) [K, o+ (K?) ot (K?)pot...] (m=1). (4-22)
Replacing (4-22) in (4-20), solving with respect to a,, and replacing back in (4-22), we finally
PNy Kot (K)ot = (Ko gt (K0t I (02 0) (423)

It is easily seen by direct substitution that (4-23) (provided it converges) satisfies system (.5).
The rth-order approximation of the ‘modified iteration method’ is obtained by taking the
first r terms of (4-22):

affr = —[Ko o+ ...+ (K7 1)g o] {1 = [Kp o+ ..+ (K1) o1} (4-24)
ayr = —[K, o+ ...+ (K)o {1 = [Kp ot .. + (K7 ) o} (= 1). (4-25)
The first- and second-order approximations may be evaluated without difficulty, with the
help of (4:12), (4:13) and (4-16). The results are
(0ag)Mr = 0-0544iK[1 — (4i/m) KIln K— (2—1-1481) K — (12/n?) K?(In K)?]
—(0-208—0-0791) K®In K+ O(K3), (4-26)
(—1)raM = [n72(0-156+0-06461Inn) + O(n=*)] [iIK+ (2/7) K2In K
—(i/2) (2—1-1211) K2— (4i/n?) K3 (In K)?] +{n~2[(—0-099 — 0-0091)
+(—0041+0-0231) Inn]+0(n 4} K’ InK+O(K3%) (n>=1), (427)
(0ay)M2 = 0-06041K[1 — (4i/m) Kln K — (2 —1-1451) K — (12/n?) K?(In K)?]
—(0-231—0-0871) K3In K+ O(K3), (4-28)
(—-1)maM = {n~2[0-170+0-0788 In #+0-00790 (In )2+ 0-00109 (Inx)?]
—n-4[0-00014 In n— 0-000083 (In )] + O (n~*)} [iK + (2/m) K*In K
—(1/2) (2—1-1151) K2 — (4i/n?) K3 (In K)?] +{n~%[(—0-216 + 0-0511)
+(— 0100+ 0-052i) In 74 (—0-0101 +0-0023i) (In 7)?] +- (0-00018 -+ 0-00044i)
xntnn+0(nH} K2 In K+ O(K?) (n=>1). (4-29)
Comparing these results with (4-2) and (4-19), we see that the modified iteration method
apparently converges much more rapidly than Neumann’s method. Expression (4:28)
almost does not differ from (4-2). Expression (4-29) agrees with (3-29) within 5 %, forn 5 10,
and within 15 9%, for n < 10%; the convergence becomes worse as 7 increases. Therefore, the

second-order approximation of the modified iteration method is a very good approximation,
except at extremely small distances from the edges.

6 VoL. 252. A.
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42 H. M. NUSSENZVEIG ON THE

The modified iteration method seems to be the best of the three methods studied in this
section. The agreement between the results obtained by these methods and the solution by
the asymptotic method justifies the assumption that () is not an ‘ill-conditioned’ system
and indicates that (3-28) and (3:29) give a very good approximation of the rigorous solution.

5. APPLICATIONS

In this section we shall apply (3-28) and (3:29) to the evaluation of physically important
quantities.

(a) The reflexion coefficient
It follows from (1-2) and (3-28) that

|R|?2 =1—4K+8K?+(16/7%) K3(In K)?2—2-84K%In K+ O(K?3)
= 1—12:57¢+78-96¢4% +50-27¢%(In (79)]*—88:03¢%In (ng) + O(¢?), (5-1)
where ¢ = K/m = d/A (d =2a = width of double wedge).

1ORS]
\\ ~N
AN
09 N
N
N N
08 N\ dw ~

R
/
/

07 ‘\

06

0 0-01 0-02 0-03 0-04
g

Ficure 1. Reflexion coefficient as a function of ¢. d.w., double wedge;
u. unflanged parallel-plate waveguide.

The curve in full line in figure 1 represents | R|? as a function of ¢. The curve in dashed line
gives the reflexion coeflicient of an unflanged semi-infinite parallel-plate waveguide, which
is given by (Vajnshtejn 1954, p. 22):

|R|?=exp (—2mq) (for 0 <g<1). (5-2)

The presence of a flange results in a better matching to outside space, and therefore reduces
the reflexion coefficient.

Any deviation of the reflexion coefficient from its limiting value unity may be called
a ‘radiative correction’. There are two kinds of contributions to the radiative corrections.
One of them is due to the principal mode by itself. The surface current associated with this
mode travels along the waveguide walls (in the x-direction), then ‘turns the corner’ upon
its arrival at the edges, and propagates in the y-direction on the screen, bringing sources of
radiation into region II. The other contribution is due to the evanescent mode correction
(4-2). The evanescent modes do not contribute directly to the energy flux; they serve as
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SOLUTION OF A DIFFRACTION PROBLEM. I1 43

a storage of energy to build up the quasi-static fields attached to the edges. However, they
contribute to the radiative corrections through their coupling with the principal mode (see
(3-8) and (3-9)). The evanescent mode correction is usually neglected in approximate
treatments of radiation from waveguides. Our solution indicates that it is very small for
a narrow double wedge. This is due to the weak coupling between the principal mode and
the evanescent modes (I, §5(g)).

(b) The end correction
Not only the modulus, but also the phase of a, play an important role. If we put

(11) becomes ay = — |R| exp (iD), (5-3)
. ecome

(x,9) = (1—|R]) exp (~iks) ~2IR] exp [Ji(n-+@)]sin [k(x+a)] + 5 (), (54)

where o = O/2k. (55)
1-6
A
% 12 <~
= I
908
[
(<)
/
04 S —"
. //
L
0 001 002 003 004
q

Ficure 2. Phase of reflected wave and ratio of end correction to diameter as a function of g¢.

Thus, interference between the incident mode and the reflected mode gives rise to quasi-
stationary waves within the waveguide. The distribution of nodes and anti-nodes of the
stationary part of the field is determined by the parameter « defined in (5-5). The correct
distribution is obtained by taking the first (virtual) node at x = —a; hence, the name of ‘end
correction’. According to (3-28), (5-3) and (5'5),

® = —(4/m) KIn K +1-114K + (16/37%) K3(In K)3— (4 x 1-114/n%) K3(In K)?
—0-621 K3In K+ O(K%),  (56)

majd = —In (ng) +0-875+4¢%[In (mg)]*— 3-50¢*[In(mq) ]2 —4-81 ¢21n (nq) -+ O(g?). (5-7)

Figure 2 is a plot of @ and «/d as a function of ¢. The ratio a/d tends to infinity for ¢ — 0,
but the behaviour of the end correction depends on whether d - 0 or A — 00 ; it tends to zero
in the first case, and to infinity in the second.

The double-wedge problem also admits an acoustical interpretation (I,§2). The
acoustical problem was discussed by Rayleigh (1904), with the assumption of a constant

normal velocity over the aperture. This is obviously equivalent to neglecting all evanescent
6-2
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44 H. M. NUSSENZVEIG ON THE

modes (cf. § 4 (a)). Rayleigh found the following value for the end correction (adapted to our
notation), for K < 1:

mejd = —In (mq) +3—C (3—C = 0-923). (5-8)
It is easily seen that this follows from (5-7), by neglecting the evanescent mode correction.
The contribution of the evanescent mode correction is of the order of 2 9%, for ¢ = 0-05.

(¢) Resonance of a finite channel

The reflexion coefficient and the end correction play an important role in the analysis of
resonance effects in channels of finite length. As an example, let us consider the system
shown in figure 3, where the waveguide is stopped at a distance L from the mouth by
a perfectly reflecting piston P. Let this system be excited by a plane wave, perpendicularly
incident from region II, and let us assume not only that K < 1, but also that ¢ < L. As
a result of the last assumption, evanescent modes excited at one extremity will practically
disappear before reaching the other one, so that the analysis may be confined to the principal
mode.

Ficure 3. Channel of finite length closed at one end.

The principal mode is excited with amplitude 4 at the open end, travels to the piston, is
totally reflected, travels back to the open end, is again reflected, and so on. According to our
assumptions, the amplitude and phase of the waves reflected at the open end may be calcu-
lated by means of (5-1) and (5-6). Taking into account multiple reflexion, and neglecting
evanescent modes, we find the following expression for the wave function in region I:*

u(x) = 24 exp (ikL) {1+ |R| exp [i(D+2kL) ]} cos [k(x—L)]. (5-9)
Thus, stationary waves build up within the channel, with an intensity proportional to
& = |1+ |R|exp [i(®P+2kL)]|~2 = |1+ 2 |R| cos [4m(L+a)/A] + |R|?|~L. (5:10)
For given d and 4, the intensity is a maximum for the resonant lengths
L,+a=2n+1)4 (n=0,1,2,...). (5-11)

This agrees with the well-known result of the elementary theory of organ pipes, provided
that this result is applied to the ‘ corrected length’, i.e. to the sum of the actual length of the
pipe and the end correction.

* This treatment follows closely that of Vajnshtejn (1954, p. 111).
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SOLUTION OF A DIFFRACTION PROBLEM. II 45
If Lis changed, by displacing piston P, we find, in the neighbourhood of the nth resonance,
&> =|1—2|R|cos[4n(L—L,)/A]+|R|?L. (5-12)
For |L—L,| < A/4m, this has the form of a typical resonance curve:
[8(t0) [gunax ]? = (Aw)? [4w? -+ (Aw)?] 7, (5:13)
where w= (L—-L,)/d, (5-14)
B = (L—|R[) 72 = (2mg) 72, (6:15)
Aw = (1—|R])/(2nq J|R|) = |R|~* (‘half-width’). (5-16)

By measuring the resonant length and half-width of a resonance, the reflexion coefficient
and the end correction might be determined. On the other hand, the values of these
quantities might be employed to measure the wavelength.

The effect of a finite conductivity of the walls may be taken into account, by applying
well-known methods (Slater 1942). It may be shown that, for good conductors, in the micro-
wave region, the correction due to finite conductivity may be rendered much smaller than
the evanescent mode correction, so that the latter might be detected, in principle, by a very
precise measurement.

A similar treatment may be applied to the resonance of a channel open at both ends. Such
a system may be considered as one of the simplest theoretical models of an antenna.

(d) The radiation pattern

To find the radiation pattern of the narrow double wedge, we must evaluate the coeffi-
cients A(y), which, according to I, (5-22) to (5-24), are given by

A() = (/) (1=7) ysin (K) | (1—ag) 7>+ 3 (—1)" (3D} (13—, | (517)

If we replace (—1)"a, by (3-29), and expand (y2—1)* in powers of y;!, the series which
appears in (5:17) may be expressed in terms of the functions

Y(dy) = SnA =), (518)
n=1

where y = yK/m = y[y,, and A takes thevalues £,%, .... Fory < 1, % (A, x) may be expanded in
a power series in y (see A), and (5-17) becomes

A(y) = (2/m) (1 —y2)~tysin (yK) {(1 —a,) y~2— (0-223/m) K2[1— (2i/m) KIn K]+ ...}
(ry<7) (5°19)
Substituting this result in I, (5-32), we find
up(R,0) ~ [(1—a,)sin (Ksinf)/sinf—(0-071 K2—0-0451K31n K)
x sinfsin (Ksinf) +...] Hy(kR). (5-20)

The first term in the second member, which is the main term, differs from Kirchhoff’s
approximation I, (5-:33) only by the replacement of a factor equal to unity by (1 —a,). This
is equivalent to the replacement of the incident wave by the sum of the incident and reflected
waves in Kirchhoff’s aperture distribution.

6-3
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46 H. M. NUSSENZVEIG ON THE
It follows from (5-20) that
un(R,0) = [(1—a,) K+ O(K3sin?0)] Hy(kR), (5-21)

so that the main term of the radiation field is an isotropic cylindrical wave. At large dis-
tances, the aperture behaves like a virtual line source.
The mean outgoing energy flux (per unit length in the z-direction) is

3w

By — f o(6) do), (5-22)
.

where ¢(0) has been defined in I, (5-40). The conservation of energy demands that
@y = O, = ca(1—|R|?)/4m. (5-23)

This condition, which is easily verified with the help of (5-1), is an important test of the
accuracy of the solution.

For y 2 1, we may obtain an asymptotic expansion of #(4,y) and of A(y) by a method
similar to that which was applied to the function Z(A, m) (see Appendix). Fory > y,, we find

see A
( ) A(y) » —2(n/K)% 0-207iK[1— (2i/m) KIn K+ ...] cos (yK —1m) y~E. (5-24)
This gives the correct singularity at the edges.

For distances from the edges much smaller than g, the field has a quasi-static behaviour,
determined by the singularity. For distances much larger than the wavelength, the radiation
field (5-20) predominates. The evaluation of the field in the intermediate region, where the
transition from the quasi-static zone to the wave zone takes place, is more difficult, and will
not be considered here.

6. SUMMARY AND CONCLUSIONS

The main interest of the double-wedge problem is that it seems to be the simplest diffrac-
tion problem, involving one finite dimension, which may be treated in the £-representation.

The rigorous formulation of the problem reduced it to the solution of an infinite system of
linear equations. Although this appears to involve considerable difficulties, approximate
solutions may be found in a fairly direct way, once we have recognized the essential physical
aspects of the problem. A drawback of this method is the lack of a rigorous procedure for
estimating the error. However, we believe that the approximations given in this paper are
well justified, from the physical point of view.

To find approximate solutions, we had to determine the main limiting cases of our prob-
lem. Itisusually assumed that there are only two such cases: the short-wavelength limit and
the long-wavelength limit. Perhaps the most significant result of our analysis is that there
exists a third limiting case, the case of critical incidence, which plays an important role as
a link between the theory of diffraction and the theory of quasi-stationary currents. This is
an essential difference between diffraction problems involving no finite dimension and those
which involve at least one finite dimension, and is at the root of some of the main difficulties
encountered in the latter case.

The wide double-wedge problem may be treated as a perturbation of a limiting case, in
which K-> co. The most convenient limiting process seems to be the removal of one wedge to
infinity. In this process, the solution of the double-wedge problem tends almost everywhere
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(not everywhere, because of the critical region) to the corresponding solution of Reiche’s
single-wedge problem. The limiting form of system (S) is an integral equation, which is
satisfied by the solution of the single-wedge problem in the A-representation. Reiche’s
solution allowed us to determine the behaviour of the field near the edges. This led to the
replacement of the ‘ edge condition’ by a condition of great heuristic value, on the asymptotic
behaviour of the mode amplitudes.

Treating the wide double-wedge problem, for ordinary incidence, as a perturbation of the
single-wedge problem, we obtained the independent wedges approximation. The i.w.a. is
related to the first-order approximation in Schwarzschild’s theory of diffraction by a slit,
but it contains certain improvements. In terms of Schwarzschild’s picture of interaction
between the wedges by multiple diffraction, the i.w.a. is a ‘weak coupling’ approximation.
The coupling affects most strongly modes which belong to the critical region. Outside of
this region, the i.w.a. must be a very good approximation, for ordinary incidence; this is
confirmed by the evaluation of the residuals. In the intermediate wavelength region, the
i.w.a. would probably need to be improved. Although we have not investigated the problem
in this region, we believe that this could be done by methods similar to those which were
recently developed in connexion with other problems (Karp & Russek 1956; Keller 1957).

For ordinary incidence, the i.w.a. allows us to throw some light on questions A and B of
I,81. Ithasbeenshownin a previous paper (Nussenzveig 1959 a) that all classical diffraction
patterns depend only on a very small spectral region, centred on the direction of incidence.
The i.w.a. shows that, for ordinary incidence, Kirchhoff’s approximation is the main term
of the solution in this region, though this is by no means true outside of it. This result may be
justified by the closeness to geometrical optics. Taken together with the previous result, it
explains the success of classical diffraction theory.

The difficulties for understanding this in the x-representation arise from an inadequate
choice of variables: attention is focused on the field distribution in the plane of the screen,
while the proper variables are the Fourier components of this distribution, belonging to
a narrow spectral region. Any details which do not contribute significantly to this region
(such as edge singularities) do not affect the classical patterns. Their effect may be felt only
in regions which lie outside the domain of classical theory, e.g. at large diffraction angles, or
at small distances from the aperture.

The error of classical diffraction theory is of the same order as the reflexion coeflicient,
which, for ordinary incidence, is extremely small in the visible domain. The origin of
reflexion is the distortion of the incident mode, which takes place chiefly within a few
wavelengths from the edges. The distortion is much larger in the critical incidence region,
where the i.w.a. breaks down, and strong reflexion appears.

In the limiting case of exactly critical incidence, the rigorous solution may be given for any
value of the wavelength. The incident mode is totally reflected, and the field vanishes
everywhere, so that no propagation is possible. The critical mode is not coupled to the others,
as shown by the ‘separation’ of system (§). In the neighbourhood of exactly critical inci-
dence the coupling to other modes is weak; the effects which appear in this region are
illustrated by the solution of the narrow double-wedge problem.

To investigate the possibility that Kirchhoff’s approximation is the first step of an
accurate solution by successive approximations (I, §1, question C), Neumann’s iteration
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method was applied to (§). By comparing Neumann’s first- and second-order approxima-
tions, for ordinary incidence, with the i.w.a., we have seen that the numerical convergence
of Neumann’s method appears to be satisfactory in the normal region, but not so in the
asymptotic region. It follows that Neumann’s method may be applied, in practice, to the
evaluation of quantities which do not depend on the asymptotic region (such as the reflexion
coefficient).

For exactly critical incidence, Neumann’s series converges to the rigorous solution,
although thisis a case of ‘strong coupling’ between the wedges; the convergence, however, is
very slow. The results obtained in the narrow double-wedge problem seem to indicate that
the iteration method still converges (very slowly) in the neighbourhood of exactly critical
incidence. This suggests that Neumann’s method converges for all values of the wavelength,
but the rate of convergence varies greatly from one region to another.

In the narrow double-wedge problem, the effects of strong reflexion, typical of critical
incidence, and quasi-static effects due to the edge zones, predominate. Since both effects
exist also for awide double wedge, the connexion between short-and long-wavelength regions
(I, § 1, question D) becomes quite clear in this case. This connexion suggested the ‘asymp-
totic method of solution’. This method is based on the determination of the asymptotic
behaviour of the mode amplitudes (given by ‘Sommerfeld’s asymptotic series’). Advantage
is taken of this to reduce each system (S,), resulting from the separation of (), to a finite
system of linear equations. In this way, we obtain an approximate solution of the narrow
double-wedge problem, which seems to be a very good approximation. This is confirmed by
its agreement with approximate solutions derived by different methods. The best of these
seems to be the ‘modified iteration method’.

The solution obtained by the asymptotic method allowed us to evaluate the ‘radiative
corrections’ to the amplitude and phase of the reflected wave. The main correction arises
from the principal mode by itself, but there is an additional contribution, due to its (weak)
coupling with the evanescent modes. This ‘evanescent mode correction’ is very small for
anarrow double wedge; it was neglected in previous treatments of this problem by Rayleigh
and by Levine & Schwinger’s variational method. The reflexion coefficient and the end
correction may be employed in the analysis of resonance effects in channels of finite length,
a subject of some interest in connexion with antenna theory.

To conclude, a few possible applications and topics for further developments will be
mentioned ; some of them are now being investigated. A study of the solution in the inter-
mediate wavelength region would be desirable, in connexion with the following problems:
the possibility of extending the asymptotic method of solution to this region ; the behaviour of
the radiative corrections in the case of strong coupling between the modes; the evolution of
the radiation pattern in the transition from the long-wavelength region to the domain of
classical diffraction theory; the problem of critical incidence of higher-order modes. A sub-
ject which we have barely touched upon, and which deserves further consideration, is the
problem of border effects in optics. Heisenberg’s uncertainty relations have often been
illustrated by means of diffraction experiments, but the analysis of these problems stands in
need of some improvement.* Finally, it is hoped that the methods developed in this paper
may help to throw some light on the antenna problem.

* See Beck & Nussenzveig 1958 Nuovo Cim. 9, 1068.
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7. APPENDIX. ASYMPTOTIC EXPANSION OF X (A, m)

The function E(A, m) defined in (3-17) satisfies the recurrence relation

BEA+2,m) =m2E(A,m)+n"2{A+2)m2lnm+n"2{'(A+2) m~2, (7-1)
where {(s) is Riemann’s zeta function, and {'(s) = d{(s)/ds. Itis easily seen that
B4, m) = 1 [ £ m) Inm-E (4, )], (7:2)
where E(A,m) = %’ n=(m?—n?)"1, (7-3)
n=1

the prime on the summation sign indicating the exclusion of n = m.

We shall restrict ourselves, at first, to non-integral values of . According to (7-1), it
suffices to consider the interval 0 < A < 2. To find the asymptotic expansion of {(4, m) in this
interval, we start from the identity (Valiron 1948, p. 507)

wt — (@mysingn [ (a2 hdx (0<d<2). (7-4)
0

Substituting this in (7-3), and taking into account the following results,

§’ (m?—n?)"!' = —3m~2 (Bromwich 1949, p. 67), (7-5)
n=1
S (x2+-n?)~1 = (m/2x) £ (mx) (Valiron, p.507), (7-6)
n=1
where £ (u) is the Langevin function, & () = cothu—u"!, we finally obtain
E(A,m) = —%1(20+8) m~ 24X (A, m), (7-7)
where X(A,m) = sin $Aw fo (x24+m?)~1.Z (mx) x~ A dx. (7-8)
0

For 0 <1 < 2, we have
X(A,m) = §mtan ($Am) m~A=1+$m=2=24-{(A) m~2 —2sin ($A7m) m~25(A, m), (7-9)

where (A, m) = fw(e2”"~1)“ (x2+m?)~1x2~A dx. (7-10)
0

For 1 < < 2, (7-9) follows from the formula (Valiron, p. 507)

o0

§()():sin%/l7rf L) xrdx (1<d<2), (7-11)
0

with the help of (7:4). For 0 <A < 1, (7-9) follows from the formula (Titchmarsh 1931,

p.25) 1

() =sindd [ | =]y (0 <a<). (7-12)
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Substituting (7-9) in (7-7), we find (for 0 <1 < 2)

E(A,m) = mtan ($Am) m™ A1 —1(20+ 1) m= 224+ {(A) m~2 —2m~2sin (A7) (A, m).  (7-13)
To find the asymptotic expansion of 5(A,m), we employ the identity

N-1
(2m?) "t = m2 3 (— 1) (xfm) + (— 1) (24 m?) ()2, (714)
r=0
Substituting this in (7-10), and employing Riemann’s formula (Valiron, p. 506)
£s-1de
(@6 = [ Z=F 6>, (7:15)

we find
n(A,m) = (2m)A-1 % (=1)»1{(2n+1—-2)I'(2n+1—2A) (2am)~2"+¢(A,m), (7-16)

n=1
where

2N+2~A
5(/1 m) = (__]_)Nm—Z j (CZﬂf 1) (xzdjimg))
le(A,m)| < (2m)A-1{(2N+38—A) (2N +38—2Q) (2mm)~2V-2, (7-17)
Equation (7-16) gives the asymptotic expansion of (A, m) for 0 < A < 2. Accordingto (7-17),
the remainder after a certain number of terms is of the same sign as, and numerically less
than, the first term which is neglected.
Differentiating (7-13) with respect to A, we find

E(A,m) = —Fmtan ($Am) m=A-nm+ tn? sec?(FAm) m~2A-1
+3(204+1) m= 22 Inm—3m= 22+ " () m~2 —mam~2 cos (3An) (A, m)
—2m~2sin (A7) 75 (A, m). (7-18)

According to (7-16),

(A, m) =1In (27) g(A, m) 4 (2m) A~ g (—1)» l:g 2n+1— Ilr((szi—ll _j))]
x{(2n+1—2 )I‘(Qn—l—l- A) (2mm) 2 ey (A, m), (7-19)

where ©  2N+2-1]
' o A\N+1—2N x nxdx
ex(d,m) = (—1)¥1m fo (€2 —1) (x*+m?)’

lex(A,m)| < (2m)* (2mm) V=2 [{(2N+-2—A) I'(2N+2—Q) 4+ (27) 2 {(2N+4—Q)
xI'(2N+4—-A4)]. (7-21)
Substituting (7-13), (7-16), (7-18) and (7-19) in (7-2), we finally obtain the asymptotic
expansion of E(4,m) for 0 <A <2 (A1)
E(A,m) = Esec? (3Am) m= =14+ L(A) (mm)~2Inm+{ () (wm)~2
—8(2m) A~ sin ($Am) {(8—A) I'(8 —A) (2mm) ~*Inm + [§m cos $An
+sin 37 (In (2m) —{'(3—A) [E(8—2) =1V (83 —A)/T'(8—Q))] {(83 —A) I'(3—A) (2mm)~*
—sin (3A7) {(5—A) I'(5 —A) (2am) =6 Inm — [$m cos $Am +sin $Ax (In (27)
—{'(5=0/(6—-)=T"(6—2)/T'(6—2))]{(6—A) T'(5—A) (2mm) 6 +...}. (7-22)
According to (7-1), this determines the asymptotic expansion of E(A,m) for all positive
non-integral values of A.
In §4(b), we have to evaluate E(A,m) and E; (A, m) for A = 1. We cannot make 1 =1 in
(7-22), since {(A) has a simple pole at this point. However, since E(1,m) is regular for
A = 1, we can develop the second member of (7:22) in a power series about this point. For

(7-20)
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this purpose, we need the Laurent series expansion of {(1) about A = 1, which is given by
(Hardy 1912 ; Kluyver 1927)
() = A=1)"1+C+ X C,(A=-1)", (7-23)
n=1
where C 1s Euler’s constant, and

¢ — (=1

n n+1
lim Y (Inz)* (InN) +:|

nl sl v n+1 1 (7:24)

These ‘generalized Euler constants’ may be evaluated numerically with the help of the
Euler-Maclaurin sum formula, by the same method which is employed to evaluate Euler’s
constant (Valiron 1948, p.219). The results are

C, = 0-07282; C, = — 0-00486. (7-25)
Making A = 1+¢, |¢| < 1, in (7-22), and noticing that
m A"l =m~2[1—elnm+L1e2(Inm)2+ O(e3)], (7-26)
we get, with the help of (7-23),
BE(1+em) = L(mm)~2 (Inm)2+ C(mm)~2Inm+ (Fn2+C,) (mm)~2
—[¥(mm)~2(Inm)3 + (72 —C,) (mm) =2 Inm—2C,(mm) 2] e+ O(€?)
—8(2m)¢ [cos (3me) {(2—¢) ['(2—¢) (2mm)~*Ilnm+O(m™*)], (7-27)
from which it follows that
E(1,m) = L(mm)~2 (Inm)2+C(mm) 2 Inm+ (72 +4C,) (7m)~2
—8¢(2) T'(2) (2nm)~*Inm+ ..., (7-28)
— &5 (1, m) = $(mm) 2 (Inm)3+ (Fn2—C,) (mm)~2In m—2C,(mm) 2

18(2) T'(2) [In (2m) —&'(2)/¢(2) — TV (2)/T(2)] (2mm)~* Inm+ O(m~*%). (7-29)
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